Использование энергии природных источников. Реферат: Источники энергии. Системы с высоким тепловым потоком

Под пристальным вниманием ученых в последнее время возобновляемые источники энергии. Пришло то время, которое заставило задуматься о завтрашнем дне и ясно понять, что использование полезных ископаемых Земли не может быть бесконечным.

Возобновляемые источники энергии (ВИЭ)

Реакция термоядерного синтеза Солнца является основным процессом возникновения альтернативной энергии. Согласно расчету астрономов, предполагаемая жизнь этой планеты составляет пять миллиардов лет, что позволяет судить о практически бесконечных запасах солнечного излучения. Возобновляемые источники энергии - это не только поступающие потоки Солнца, но и другие производные - альтернативные источники: движение ветра, волн и в природе. В течение длительного времени природа приспосабливалась к использованию солнечного излучения и таким образом достигла теплового равновесия. Эта полученная энергия не приводит к всеобщему потеплению, так как, запустив все необходимые процессы на Земле, она обратно возвращается в космос. Рациональное использование возобновляемых источников энергии является первостепенной задачей

ученых, ведущих научные разработки в этой области. Ведь из всего полученного солнечного излучения только третья часть используется на поддержание жизненных процессов на Земле, 0,02% расходуется растениями для необходимого им фотосинтеза, а оставшаяся невостребованная часть возвращается обратно в космическое пространство.

Виды и применение

Возобновляемые источники энергии состоят из нескольких основных компонентов:


Национальная лаборатория Дании подготовила отчет, где было сказано, что уже к 2050 году мир сможет перейти на получение энергии с очень низким уровнем выброса углерода. При этом себестоимость ее будет гораздо меньше, чем стоимость добычи природных ресурсов из недр Земли.

Основные генераторы энергии - это электрические станции: тепловые (ТЭС),гидравлически(ГЭС), атомные (АЭС), а также транспортные агрегаты (автомобили, тепловозы, теплоходы, тракторы и т.п.).Энергоносителями служат разные виды топлива: нефть, мазут, природный газ, уголь, бензин, дизельное топливо, уран, плутоний, а также гидроресурсы. Расширяется применение возобновляемых источников энергии (ВИА): ветряных, солнечных и приливных. Однако основным источником энергии пока остается органическое топливо. В разных странах вырабатывая на АЭС энергия составляет 10…20%, на ГЭС 4…20%. За счет ВИЭ получают всего 1…2% вырабатываемой энергии. Весьма важно, что на долю транспортных машин приходится более 60% суммарного количества вырабатываемой энергии.

При оценке развития энергетики и формирования энергетической программы следует исходить не только из задачи выработки требуемого количества энергии, но и необходимо учитывать имеющиеся ресурсы, экономические, экологические и социальные факторы.

Для получения целостного представления о перспективах и проблемах развития энергетики на ближайшее время целесообразно оценить возможности каждого из направлений её развития, определяемых видом первичного источника.

Нефть . Установлено, что в недрах планеты имеется примерно 2000 млрд. т нефти, из которых надёжно разведано около 410млрд т. Ежегодное мировое потребление нефти приближается к 3 млрд. т. при естественном её воспроизводстве не более 1%. При планировании развития энергетики на перспективу приходится учитывать, с одной стороны, ограниченность природных запасов нефти, а с другой, − тот факт, что добыча нефти со временем усложняется. Уже сейчас примерно треть всей получаемой нефти добывается из скважин, пробуренных в дне морей и океанов. Глубина подводных скважин всё увеличивается и уже достигает 2 км. Увеличивается и глубина наземных скважин. Целесообразный предел глубин скважин для поиска нефти составляет 4…8 км.

Важное направление связано с развитием экономичных теплосиловых установок и в первую очередь дизелей, на долю которых в настоящее время приходится до 30% суммарной установленной мощности транспортных энергетических установок. К сожалению, использование дизелей приводит к загрязнению окружающей среды. Только судовые, тепловозные и промышленные дизели выбрасывают в год не менее 3 млн.т воздуха, загрязнённого оксидами азота, серы и углерода, углеводородами и сажей.

Уголь . Разведанные запасы угля в мире значительны, но качественно различны. Низкая калорийность углей ряда месторождений вызывает серьёзные трудности в их использовании. Эти угли невыгодно транспортировать на большие расстояния, так как значительная его часть составляют неорганические отходы. Можно перерабатывать эти угли в электрическую энергию на месте добычи. Однако при таком решении проблемы потребуется строительство сверхдальних линий электропередач (ЛЭП), в магистралях которых теряется до 10% энергии и в распределительных сетях - ещё около 40%.


Тем не менее, в ближайшей перспективе количество угля, используемого в качестве топлива в энергетике, хотя и медленно, но возрастать и превысит 9 млрд.т.

Часть добытого угля станет сырьём для производства на месте синтетического жидкого топлива, технология получения которого активно совершенствуется.

Кроме обычного природного газа имеются его большие запасы, связанные с водой в зонах вечной мерзлоты и океане. Есть ещё газ, растворённый в подземной гидросфере. Запасы такого газа значительны и расположены во всех регионах планеты. Разрабатываются технологии поднятия на поверхность подземных вод с последующим их возвращением обратно под Землю после отделения содержащегося в них газа.

Практика убедительно показала, что применение газа (в основном, метана) в качестве энергетического топлива эффективно. Можно прогнозировать, что в ближайшей перспективе приоритет будет за природным газом. И это несмотря на то, что добыча газа усложняется из-за необходимости всё большего углубления скважин и трудностями транспортирования.

Атомная энергетика . В настоящее время на ядерную энергию приходится около 6% мирового топливо – энергетического баланса и 17% производимой электроэнергии.

Наибольшая доля АЭС в производстве электроэнергии во Франции (75%), Литве (73%), Бельгии (~57%), Болгарии, Словацкой Республике, Швеции, Украине, Республике Корея (от 43 до 47%).

Тепловые реакторы на уране – 235 используют природный уран неэффективно (менее 1%). Поэтому они могут быть основой атомной энергетики лишь ограниченное время. Так за время жизни (50 лет) тепловой реактор мощностью 1 ГВт потребляет около 10 тыс. т природного урана при потенциально мировом ресурсе ~ 10 млн.т. Отсюда очевидно, что неизбежным становится использование в ядерном топливном цикле продуктов распада и в первую очередь плутония.

Быстрый реактор, обеспечивающий возможность на каждое разделившееся ядро воспроизводить более одного ядра нового ядерного топлива, позволяет резко увеличить использование природного урана (~ 200 раз). Реальной становится атомная энергетика мощностью 4000 ГВт, функционирующая в течение 2500 лет.

Однако крупные аварии, проблемы нераспространения ядерного оружия, обращения с облученным ядерным топливом и радиоактивными отходами привели к нереализованности первоначальных планов.

Большая работа проводится по повышению эксплуатационной безопасности. Разрабатываемые реакторы третьего-четвёртого поколений характеризуются оценкой риска для человека менее чем 10 в минус 7 степени, что существенно выше, чем на ТЭЦ.

Атомная энергетика, отвечающая современным требованиям безопасности и экономичности, способна в период после 2020 года обеспечить существенную часть прироста мировых потребностей в энергопроизводстве, объективно необходимого вследствие роста населения планеты. Атомная энергетика позволит стабилизировать потребление обычных топлив и выбросов химического горения.

ГЭС . Гидростанции дают относительно небольшое количество электроэнергии. Значительная инерционность ТЭС и АЭС при смене режимов и наиболее высокая экономичность при работе на одном заданном установившемся режиме приводит к необходимости использования ГЭС в качестве регуляторов Единой энергетической системы.

Практика создания крупных ГЭС с большими водохранилищами неминуемо связана с потерей для сельского хозяйства больших площадей пахотной земли, лугов и лесов, а большие искусственные водоёмы со временем приводят к экологически неблагоприятным последствиям.

Одновременно не вызывает сомнений целесообразность более широкого использования гидроэнергетики малых водных потоков с помощью так называемых рукавных переносных электростанций, состоящих из небольших генераторов и гидротурбин. Хотя мощность таких установок невелика – 1…5 кВт, но себестоимость киловатт-часа оказывается ниже, чем у аналогичных по мощности электростанций на основе ДВС.

ВИА . К числу возобновляемых источников энергии обычно относят солнечную энергию во всех её проявлениях: получаемую Землёй теплоту солнечного излучения, энергию ветра, приливов и отливов, энергию волн, а также прирост биомассы на Земле, биогаз из отходов животноводства и др. По оптимистическим оценкам, без ущерба для окружающей среды за счёт ВИЭ в принципе можно получить в несколько раз больше энергии, чем вырабатывается в мире в настоящее время.

Известно, что энергоустановки, работающие на углеродсодержащем топливе, выбрасывают в окружающую среду углекислый газ, улавливать который пока невозможно. В итоге растёт его концентрация, нарушая тепловой баланс планеты, что приводит к её разогреву (парниковому эффекту).

Такой неблагоприятной перспективы можно избежать путём расширения использования возобновляемых источников энергии. По оценкам специалистов вклад ВИЭ в мировую энергетику к 2020 году составит 9-10%.

Солнечная энергия является естественной для Земли, ей обязано своим существованием всё живое. Освоение методов и средств использования солнечной энергии в производстве и быту уже в настоящее время превращается в задачу глобальную для всего человечества.

Геотермальные энергоустановки используют температуру Земли. Это могут быть природные подземные запасы горячей воды или пара, а также закачка воды вглубь земли. Естественно, применение таких установок целесообразно в отдельных районах, например на Камчатке, в Исландии.

Внимание ученых – энергетиков привлекают перспективы использования

возобновляемой биомассы, ежегодный прирост которой оценивается в 107 млрд. т. Энергия, которой обладает такое количество биомассы, эквивалентна 40 млрд. т нефти.

Из зелёной массы в результате переработки получают высокооктановое топливо в виде эфиров и спиртов.

Энергосбережение . Задача обеспечения энергией путём наращивания энергетического потенциала непосильна даже для самых высокоразвитых стран. Для того чтобы темпы наращивания энерговооружённости были реальными, необходимо проводить активную энергосберегающую политику в двух направлениях: повышать экономичность самих энергетических установок и таким образом получать большее количество энергии, и повсеместно сокращать потери энергии и энергоресурсов.

Коэффициент полезного использования энергоресурсов в Украине составляет примерно 40%. Следовательно, 60% - это потери, из которых примерно 20% могут быть отнесены к предотвратимым. Для снижения энергопотребления требуется активное проведение соответствующей государственной политики с внедрением прогрессивных технологий и оборудования. Можно обеспечить значительную экономию энергии и в социально−бытовой сфере, если, например, усилить теплозащитную способность строящих зданий. В настоящее время существуют строи- тельные материалы, позволяющие экономить до 50% теплоты, расходуемых на обогрев зданий. Стены зданий, покрытые специальными прозрачными панелями, пропускают теплоту лучей солнца и не отдают теплоту наружу. Значительную экономию даёт переход для освещения на люминесцентные лампы, которые потребляют энергии примерно в 8 раз меньше чем лампы накаливания. Внедрение энерго- и ресурсосберегающих технологий − дело длительное, трудное и дорогое, но неизбежное и в конечном итоге окупаемое

Экология и защита окружающей среды . Развитие энергетики неразрывно связано с проблемами экологии и зашиты окружающей среды. Электростанции, использующие уголь, вбрасывают ежегодно около 300…350 млн. т золы, свыше 100…120 млн. т оксидов серы и азота. Зола угольных ТЭС содержит радиоактивные изотопы калия, радия и тория, количество которых почти в 10 раз больше (по дозе облучения), чем в выбросах нормально работающих АЭС. По сравнению с лучшими станциями мира наши станции выбрасывают на порядок больше твёрдых частиц, в 3 раза больше серы, в 2 раза - оксидов азота. Серные газы в окружающей среде особенно вредны для населения, животного мира, почвы и водоёмов. Современные очистные сооружения требуют больших средств. Вполне справедливо утверждение, что чистую энергетику бесплатно получить невозможно. Передовые промышленно развитые страны расходуют до 5% валового национального продукта.

Серьёзные экологические проблемы возникают с развитием атомной энергетики и, в частности, связанных с необходимостью захоронения на длительный срок её отходов.

Развитие атомной энергетики осложняется реакцией растительного и животного мира на радиоактивные нуклиды, накапливающиеся в почве. Если к естественным нуклидам мир эволюционно приспособился, то иначе реагируют они на искусственные нуклиды, которые хорошо усваиваются растениями и животными. Они могут накапливаться до концентрации в 70…100 раз большей, чем в окружающей почве, что очень опасно.

Определённые трудности возникают на Земле и в связи с задачей сохранения для людей запасов пресной воды, широко используемой в качестве теплоносителя в энергетических системах. Известно, что в настоящее время запасы пресной воды составляют всего 2,8% от массы Земли и только 0,3% доступны для использования человеком. Таким образом, задача экономии пресной воды или замена её опреснённой морской является актуальной уже в настоящее время.

Всё сказанное свидетельствует о том, что подход к проблемам развития энергетики только с позиций экономических неприемлем. Необходимо увязывать экономические аспекты с социальными и экологическими.

Муниципальное образовательное учреждение

Районный День науки

Использование природных ресурсов. Нетрадиционные возобновляемые

источники энергии

Информативно-реферативная исследовательская

работа по физике

Выполнила:

Денисова Влада Руслановна,

обучающаяся 9 класса

Руководитель:

Орлова Елена Александровна, учитель 1

квалификационной

д. Плоское

2011

Введение ……………………………………………………………………

Глава I . Природные ресурсы ………………………………………………

1.1. Полезные ископаемые ………………………………………………...

1.2. Использование природных ресурсов в д. Плоское

Починковского района ……………………………………………......

Глава 2. Нетрадиционные возобновляемые источники энергии ………

2.1. Энергия Солнца ……………………………………………………….

2.2. Энергия ветра ………………………………………………………….

2.3. Геотермальная энергия ………………………………………………..

2.4. Энергия внутренних вод ……………………………………………...

2.5. Энергия Мирового океана …………………………………………….

2.6. Энергия биомассы …………………………………………………….

д. Плоское Починковского района ……………………………...

Заключение …………………………………………………………………

Список использованной литературы ……………………………………..

Введение

Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество – энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе.

Если в конце прошлого века энергия играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. Вполне реален прогноз, по которому в 2010 году будет произведено 35 тысяч миллиардов киловатт-часов! Гигантские цифры, огромные темпы роста! И все равно энергии будет мало – потребности в ней растут еще быстрее.

Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека все время растут, да и людей становится все больше. Так зачем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм .

Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях.

Правда, способы сжигания топлива стали намного сложнее и совершеннее. Возросшие требования к защите окружающей среды потребовали нового подхода к энергетике.

К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств . Ведь лишь при этом условии запасов топлива может хватить на века. Что же произойдет тогда, а это рано или поздно случится, когда месторождения нефти и газа будут исчерпаны? Вероятность скорого истощения мировых запасов топлива, а также ухудшение экологической ситуации в мире, (переработка нефти и довольно частые аварии во время ее транспортировки представляют реальную угрозу для окружающей среды) заставили задуматься о других видах топлива, способных заменить нефть и газ.

Сейчас в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Нетрадиционные возобновляемые источники энергии включают солнечную, ветровую, геотермальную энергию, биомассу и энергию Мирового океана.

Актуальность данной проблемы определила цель исследования : рассмотреть роль нетрадиционно возобновляемых источников энергии и их влияние на экономическое использование природных ресурсов нашей местности .

Задачи:

1. Изучить материал о роли нетрадиционно возобновляемых источников энергии;

2. Исследовать использование природных ресурсов населенного пункта;

3. Провести некоторые расчеты эффективного использования нетрадиционно возобновляемых источников энергии;

4. Проанализировать полученную информацию, сделать выводы о роли нетрадиционно возобновляемых источников энергии и их влияние на экономическое использование природных ресурсов нашей местности.

Методы исследования: изучение литературных и других информационных источников, проведение рассчетов, анализ информации и результатов.

Глава I . Природные ресурсы

Природные ресурсы (естественные ресурсы), компоненты природы, которые на данном уровне развития производительных сил используются или могут быть использованы в качестве средств производства и предметов потребления. Использование природных ресурсов имеет тенденцию к постоянному расширению и смене приоритетов. Главные виды природных ресурсов можно классифицировать: на основе их генезиса – минеральные ресурсы, биологические ресурсы (растительный и животный мир), земельные, климатические, водные ресурсы; по способу использования – в материальном производстве (в промышленности, сельском хозяйстве и других отраслях), в непроизводственной сфере; по исчерпаемости – исчерпаемые, в том числе возобновимые (биологические, земельные, водные и др.) и невозобновимые (минеральные), практически неисчерпаемые (солнечная энергия, внутриземное тепло, энергия текучей воды). Огромные объёмы природных ресурсов, вовлечённых в современную человеческую деятельность, обострили проблемы их рационального использования и охраны и приобрели глобальный характер .

1.1. Полезные ископаемые

Полезные ископаемые – это минеральные образования земной коры, химический состав и физические свойства которых позволяют эффективно использовать их в сфере материального производства. Делятся на твёрдые (угли, руды), жидкие (нефть, минеральные воды), газообразные (природные горючие и инертные газы).

Недра нашей страны богаты различными полезными ископаемыми. Скопления полезных ископаемых образуют месторождения, а при больших площадях распространения бассейны.

Полезные ископаемые могут эффективно использоваться в хозяйстве.

Обозначения полезных ископаемых указаны на рисунке 1.

Рис. 1. Минеральные ресурсы и их обозначение

Сравним карты полезных ископаемых различных лет (см. рис. 2, 3).


Рис. 2. Карта полезных ископаемых 1985г.


Рис. 3. Карта полезных ископаемых 2008г.

Из данных карт видно, что, например, добыча угля с 1985 по 2008г.г. снизилась на 131 млн. тон .


Рис. 4. География угольной промышленности России (цифрами обозначены млн. тон)

Также снизилась добыча нефти, газа, различных видов руд, золота и других полезных ископаемых.

1.2. Использование природных ресурсов в д. Плоское Починковского района

В деревне Плоское Починковского района проживает 1221 человек.


Рис. 5. Внешний вид д. Плоское

Проживает население в домах частного сектора, благоустроенных квартирах, коттеджах, неблагоустроенных домах. В деревне есть двухэтажная школа, рассчитанная на 320 человек, двухэтажный детский сад рассчитанный на 120 детей, музыкальная школа, дом культуры, рассчитанный на 300 посадочных мест, сеть магазинов, контора АПЖС (агропромышленный животноводческий союз), контора ЖКХ (жилищно-коммунального хозяйства), баня, почта, филиал сбербанка, сельская администрация, ФАП (фельшерско-аккушерский пункт), котельная и другие учреждения.

Построено три пятиэтажных дома, два трёхэтажных, двадцать один двухэтажных домов, четыре коттеджа.

Уголь. Древесина

С 1979 года в деревне проведён природный газ. Дома частного сектора и неблагоустроенные квартиры отапливаются дровами и брикетом.


Рис.6. Муниципальное образовательное учреждение

Дивинская средняя общеобразовательная школа


Рис.7. Дом культуры д. Плоское

Рис.8. Игровые площадки детского сада д. Плоское

Благоустроенные квартиры, коттеджи, школа, детский сад и другие учреждения отапливаются природным газом.

В деревне один раз в две недели топиться общественная баня, которая использует для отопления дизельное топливо (солярка).

Печным отоплением (древесина, брикет, уголь) пользуются жители старых домов, частного сектора, и владельцы собственных бань.

По нормативам на каждую семью с печным отоплением расход древесины – 8 м 3 или 5 тонн.

На деревне, в домах частного сектора, проживает 14 семей, расход древесины которых составляет – 112 м 3 или 70 тонн.

В старых неблагоустроенных домах, проживает 29 семей. Расход древесины составляет 232 м 3 или 145тон. Общий расход древесины равен 344 м 3 или 215 тонн . Кроме древесины для отопления, используется уголь или брикет. Расход брикета или угля за отопительный сезон, составляет 3тонны.

Общий расход угля или брикета за год составляет 129 тонн или 129000 кг.

Рис. 9. Строения (дома частного сектора)

В деревне 21 частная баня. Для отопления бань используют в основном дрова из осины и берёзы. В среднем на отопительный сезон требуется 5 м 3 дров. Таким образом, за отопительный период сжигается 105 м 3 древесины.



Рис. 10. Индивидуальные строения (бани)

Нефтепродукты

В деревне Плоское проживает 471 семья. Каждая третья семья в деревне имеет свою автомашину (рис. 11). Топливом всех транспортных средств является бензин и солярка (дизельное топливо). Общее число частных автомобилей 164. В год каждая автомашина проезжает в среднем 20000 км. Расход топлива на каждые 100 километров 10литров. Тогда за год расходуется 328 000 литров бензина. При средней стоимости 20 рублей за литр за год получается 6 560 000 рублей .


Рис.11. Транспортные средства передвижения

В деревне есть мастерская (рис.12.), в которой разновидность техники: машины, трактора, комбайны. В зимний период времени расходы топлива транспортными средствами минимальны. Больше всего топлива расходуется в летний период времени, во время уборки. В течение года тратится 18 тонн солярки (дизтоплива) и 6 тонн бензина или 18000 кг солярки (дизтоплива) и 6000 кг бензина .

Рис.12. Мастерские

В нашей деревне построена баня для пользования всем населением. Вмещает баня около 30 человек. В бане есть сауна, бассейн, комната отдыха. Топиться баня два раза в месяц. Расход солярки за один стоп бани составляет 200 литров. За месяц объём солярки составил 400 литров, за год 4800 литров . Общая стоимость расходов 96000рублей в расчёте 20 рублей за литр.


Рис.13. Баня д. Плоское

Газ

Отопление благоустроенных квартир производится природным газом. На отопление трёх пятиэтажных домов (180 квартир), школы, детского сада построена отдельная котельная. За отопительный период с октября по апрель объём газа составляет 590 000 м 3 , стоимостью 1 475 000 рублей .

В коттеджах, двух и трёхэтажных домах установлены газовые котлы. Средний расход газа составляет 400 м 3 на семью. Общий расход составляет 593600 м 3 .

Всего расход газа составил 1 183 600 м 3 .


Рис.14. Котельная

Электроэнергия

Наша ЛЭП (линия электропередач) берёт своё начало в г. Десногорск. При среднем расходе за месяц 150 кВт электроэнергии за год 471 семья расходует 847 800 кВт электроэнергии. Школа за год расходует 24000 кВт электроэнергии на сумму 107520 рублей, детский сад 23 990 кВт электроэнергии на сумму 107475,2 рублей с учётом стоимости 4,48 рублей за1кВт.

Общее количество израсходованной энергии 895790 кВт .


Рис.15. Линия электропередач

Таким образом, по использованию природных ресурсов в д. Плоское и

составленным диаграммам 1 и 2 можно сделать следующие выводы:

Диаграмма 1. Расход природных ресурсов в д. Плоское

Диаграмма 2. Расход природных ресурсов в д. Плоское

Природные ресурсы – это наше богатство. Используя их, мы должны помнить, что их запасы не бесконечны. Диаграммы 1 и 2 показывают, что население д. Плоское эффективно использует разнообразие всех природных ресурсов, количество использования не малы. Сжигая их, мы получаем энергию (много энергии), загрязняя тем самым окружающую среду. Потребности населения с каждым годом растут. Необходимо защищать нашу Землю от хищнического использования природных ресурсов и перейти к экологически чистым источникам энергии.

Глава II . Нетрадиционные возобновляемые источники энергии

2.1. Энергия Солнца

В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас рассмотреть его возможности отдельно. Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики. Заметим, что использование всего лишь 0.0125% этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5% – полностью покрыть потребности на перспективу . К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения.

Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м 2 ,

рис.17. Поэтому, чтобы коллекторы солнечного излучения «собирали» за год энергию, необходимую для удовлетворения всех потребностей человечества, нужно разместить их на территории 130 000 км 2 !


Рис. 16. Среднегодовая плотность потока солнечной энергии (цифры над стрелками, Вт/м 2 ) и площадь поверхности Земли (цифры в рамках, 10 3 км 2 ) , на которую ежегодно падает поток солнечной энергии на различных широтах для чистой атмосферы

Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчетам изготовление коллекторов солнечного излучения площадью 1 км 2 , требует примерно 10 4 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1.17·10 9 тонн.

2.2. Энергия ветра

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры – от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии!

Существенным недостатком энергии ветра является ее изменчивость во времени, но его можно скомпенсировать за счет расположения ветроагрегатов. Если в условиях полной автономии объединить несколько десятков крупных ветроагрегатов, то средняя их мощность будет постоянной. При наличии других источников энергии ветрогенератор может дополнять

существующие. И, наконец, от ветродвигателя можно непосредственно получать механическую энергию.

2.3. Геотермальная энергия

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

2.4. Энергия внутренних вод

Огромные запасы энергии скрыты в текущей воде, как Мирового Океана, так и внутренних вод. Раньше всего люди научились использовать энергию рек. Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье – в виде водяной турбины. Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода, тем более что многовековой опыт у нее уже имелся. Преимущества гидроэлектростанций очевидны – постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды.

2.5. Энергия Мирового океана

В Мировом Океане скрыты колоссальные запасы энергии. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 10 26 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 10 18 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной. Однако происходящее весьма быстрое истощение запасов ископаемых топлив (прежде всего нефти и газа), использование которых к тому же связано с существенным загрязнением окружающей среды (включая сюда также и тепловое «загрязнение», и грозящее климатическими последствиями повышение уровня атмосферной углекислоты), резкая ограниченность запасов урана (энергетическое использование которых к тому же порождает опасные радиоактивные отходы) и неопределенность как сроков, так и экологических последствий промышленного использования термоядерной энергии заставляет ученых и инженеров уделять все большее внимание поискам возможностей рентабельной утилизации обширных и безвредных источников энергии и не только перепадов уровня воды в реках, но и солнечного тепла, ветра и энергии в Мировом океане. Широкая общественность, да и многие специалисты еще не знают, что поисковые работы по извлечению энергии из морей и океанов приобрели в последние годы в ряде стран уже довольно большие масштабы и что их перспективы становятся все более обещающими.

Океан таит в себе несколько различных видов энергии: энергию приливов и отливов, океанских течений, термальную энергию, и др.

2.6. Энергия биомассы

К биомассе, кроме уже упомянутых водорослей, можно также отнести и продукты жизнедеятельности домашних животных. Так, 16 января 1998 года в газете «Санкт Петербургские Ведомости» была напечатана статья, под названием «Электричество... из куриного помёта» в которой говорилось о том, что находящаяся в финском городе Тампере дочерняя фирма международного норвежского судостроительного концерна Kvaerner стремится получить поддержку ЕС для сооружения в британском Нортхэмптоне электростанции, действующей... на курином помете. Проект входит в программу EС Thermie, которая предусматривает развитие новых, нетрадиционных, источников энергии и методов сбережения энергетических ресурсов. Комиссия ЕС распределила 13 января 140 млн ЭКЮ среди 134 проектов.

Спроектированная финской фирмой силовая установка будет сжигать в топках 120 тысяч тонн куриного помета в год, вырабатывая 75 млн. киловатт-часов энергии.

Глава 3. Использование нетрадиционных источников энергии в

д. Плоское Починковского района

Природные богатства не бесконечны. Сейчас в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Нетрадиционные возобновляемые источники энергии включают солнечную, ветровую, геотермальную энергию, биомассу и энергию Мирового океана.

На карте (см. рис. 17.) указаны районы страны, где производство «экологически чистой» энергии наиболее перспективно.


Рис. 17. Перспективные районы производства

«экологически чистой» энергии

Из нетрадиционных источников энергии в нашей деревне широко используется солнечная энергия.

На высоте двух метров устанавливаются металлические ёмкости объёмом 200–300 литров, вода в которых нагревается в солнечную погоду до 40 – 45 С. Такие установки используются как душевые, они устанавливаются возле бань и частных домов (см. рис. 18 и рис. 19).


Рис. 18. Душевая установка Рис. 19. Душевая установка

(вид снаружи) (вид внутри)

Рис. 20. Показания термометра (справа) и градусника (слева)

В таких же ёмкостях жители деревни нагревают воду на своих огородах для полива огородных культур, таким образом, улучшая их рост, развитие и созревание (см. рис. 21).


Рис. 21. Ёмкость для полива растений на огороде

В 10 километрах от деревни Плоское расположено красивейшее озеро, дающее возможность, не только любоваться его красотой, но и удивляться той энергетической силе воды, которая срывается с пяти метровой высоты, падает вниз. Поэтому озеро не переполняется и не выходит из берегов.

На озере установлена дамба – гидротехническое сооружение, аналогичное по устройству земляной платине, предназначенная для защиты низменностей от затопления.

Около 63 млн. тонн воды ежегодно устремляются вниз с пяти метровой высоты дамбы. Энергии этой воды в весенний, летний и осенний периоды хватило бы, наверняка, для снабжения электроэнергией дач, построенных на берегу озера.


Рис. 22. Дивинское озеро

Произведение рассчетов:

Зная площадь основания плит дамбы и толщину слоя падающей воды, можно рассчитать объем падающей воды, который равен 3м 3 . Используя табличные данные плотностей жидкостей, можно рассчитать массу падающей воды, которая равна 3 т за 1 сек.

Из 365 дней 245 дней вода непрерывно движется, кроме 3-х месяцев: декабрь, январь и февраль. 245 дней – это 21 168 000 сек.

Исходя из выше изложенного, получается 63 млн. т воды за год протекает в «пустую», не принося пользы жителям данной местности.

Заключение

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан. Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного «корма». Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти. И вот новый виток: в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже. Замена? Нужен новый лидер энергетики.

Им, несомненно, станут ядерные источники. Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь. А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю... Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, «воинствующая» линия энергетики. В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков но времена изменились. Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика «щадящая». Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы.

Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении. Яркий пример тому быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со всем, и все тянется к энергетике, зависит от нее.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, «черных дырах», вакууме, это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики. Лабиринты энергетики. Таинственные переходы, узкие, извилистые тропки. Полные загадок, препятствий, неожиданных озарений, воплей печали и поражений, кликов радости и побед. Тернист, непрост, непрям энергетический путь человечества. Но мы верим, что мы на пути к Эре Энергетического Изобилия и что все препоны, преграды и трудности будут преодолены. Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и экономичные методы. Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве, и себестоимости. Нам, по-видимому, следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: «Нет простых решений, есть только разумный выбор».

Можно сделать следующие выводы:

1) природные ресурсы это наше достояние и мы должны проявлять заботу об экономичном их использовании;

2) пользуясь природными ресурсами, обязаны следить за загрязнением атмосферы и окружающей среды;

3) необходимо бережно пользоваться энергией, учиться получать энергию преобразованием из других форм.

Природа предъявляет строгие требования для человека. Действия и поступки человека не должны влиять на жизнедеятельность нашей планеты. Мы должны любить свою землю, оберегать её, не жить одним днём, а думать о будущём нашей планеты. Так что наше будущее в наших руках.

Список использованной литературы

1. Аугуста Голдин. Океаны энергии. – Пер. с англ. – М.:, 1983.

2. Вершинский Н.В. Энергия океана. – М.: Наука, 1986.

3. Володин В. П.Хазановский «Энергия, век двадцать первый». – М.:Наука,1998г.

4. Воронков В.А. Экология общая, социальная, прикладная: Учеб. для вузов. – М.: Агар: Рандеву-АМ, 1994.

5. Голдин А. «Океаны энергии». – М.:Знание,1989г.

6. Источники энергии. Факты, проблемы, решения. – М.: Наука и техника,

1997.

7. Ревелль П., Ревелль Ч. Среда нашего обитания: в 4-х книгах. – М.: Мир,

1994.

8. Экологически чистая энергетика (в помощь лектору) / Авт.-сост. А.А.

Каюмов. Горький: Горьковский областной совет ВООП и областной молодежный экологический центр «Дронт», 1990. 76 с.

9. Юдасин Л.С. «Энергетика: проблемы и надежды». – М.: Мир, 1991г.

В основном энергию, используемую в быту и промышленности, мы добываем на или в ее недрах. Например, во многих слаборазвитых странах жгут древесину для отопления и освещения жилищ, тогда как в развитых странах для получения электроэнергии сжигают различные ископаемые источники топлива - уголь, нефть и газ. Ископаемые виды топлива представляют собой не возобновляемые источники энергии. Их запасы восстановить невозможно. Ученые сейчас изучают возможности использования неисчерпаемых источников энергии.

Ископаемые виды топлива

Уголь, нефть и газ - невозобновляемые источники энергии, которые сформировались из остатков древних растений и животных, обитавших на Земле миллионы лет назад (подробнее в статье «Древнейшие формы жизни»). Эти виды топлива добываются из недр и сжигаются для получения электроэнергии. Однако использование ископаемых источников топлива создает серьезные проблемы. При современных темпах потребления известные запасы нефти и газа будут исчерпаны уже в ближайшие 50 лет. Запасов угля хватит лет на 250. При сжигании этих видов топлива образуются газы, под воздействием которых возникает парниковый эффект и выпадают кислотные дожди.

Возобновляемые источники энергии

По мере роста численности населения людям требуется все больше энергии, и многие страны переходят к использованию возобновляемых источников энергии - солнца, ветра и воды. Идея их применения пользуется широкой популярностью, так как это - экологически чистые источники, использование которых не наносит вреда окружающей среде.

Гидроэлектростанции

Энергию воды используют на протяжении многих веков. Вода вращала водяные колеса, использовавшиеся для разных целей. В наши дни построены огромные плотины и водохранилища, и вода применяется для выработки электроэнергии. Течение реки вращает колеса турбин, превращая энергию воды в электроэнергию. Турбина связана с генератором, который вырабатывает электроэнергию.

Солнечная энергия

Земля получает громадное количество солнечной энергии. Современная техника позволяет ученым разрабатывать новые методы использования солнечной энергии. Крупнейшая в мире солнечная электростанция построена в пустыне Калифорнии. Она полностью обеспечивает потребности 2000 домов в энергии. Зеркала отражают солнечные лучи, направляя их в центральный бойлер с водой. Вода в нем кипит и превращается в пар, который вращает турбину, связанную с электрогенератором.

Энергия ветра

Энергия ветра используется человеком уже не первое тысячелетие. Ветер надувал паруса и вращал мельницы. Для использования энергии ветра создавались самые разнообразные устройства, предназначенные для выработки электроэнергии и для других целей. Ветер вращает лопасти , приводящие в действие вал турбины, связанной с электрогенератором.

Атомная энергия

Атомная энергия - тепловая энергия, выделяющаяся при распаде мельчайших частиц материи - атомов. Основным топливом для получения атомной энергии является уран - элемент, содержащийся в земной коре. Многие люди считают атомную энергию энергией будущего, но ее применение на практике создает ряд серьезных проблем. Атомные электростанции не выделяют ядовитых газов, но могут создавать немало трудностей, так как это топливо радиоактивно. Оно излучает радиацию, убивающую все живые организмы. Если радиация попадает в почву или в атмосферу, это влечет за собой катастрофические последствия.

Аварии ядерных реакторов и выбросы радиоактивных веществ в атмосферу представляют собой большую опасность. Авария на ядерной электростанции в Чернобыле (Украина), случившаяся в 1986 г., повлекла за собой гибель многих людей и заражение огромной территории. Радиоактивные отходы угрожают всему живому в течение тысячелетий. Обычно их хоронят ни дне морей, но нередки и случаи захоронения отходов глубоко под землей.

Другие возобновляемые источники энергии

В будущем люди смогут использовать множество различных естественных источников энергии. Например, в вулканических районах разрабатывается технология использования геотермальной энергии (тепла земных недр). Другим источником энергии является биогаз, образующийся при гниении отходов. Он может применяться для отопления жилищ и нагревания воды. Уже созданы приливные электростанции. Поперек устьев рек (эстуариев) нередко возводят плотины. Особые турбины, приводимые в действие приливами и отливами, вырабатывают электроэнергию.

Как сделать ротор Савония: Ротор Савония представляет собой механизм, применяемый крестьянами в Азии и Африке для подачи воды при ирригации. Чтобы самим сделать ротор, вам потребуются несколько чертежных кнопок, большая пластмассовая бутылка, крышка, две прокладки, стержень длиной 1 м и толщиной 5 мм и два металлических кольца.

Как это сделать?

  1. Чтобы сделать лопасти, обрежьте бутылку сверху и разрежьте ее пополам вдоль.
  2. С помощью чертежных кнопок прикрепите половинки бутылки к крышке. Соблюдайте осторожность при обращении с кнопками.
  3. Приклейте прокладки к крышке и воткните в нее стержень.
  4. Приверните кольца к деревянному основанию и поставьте ваш ротор на ветру. Вставьте стержень в кольца и проверьте вращение ротора. Выбрав оптимальное положение половины бутылки, приклейте их к крышке прочным водоотталкивающим клеем.
Буду благодарен, если Вы поделитесь этой статьей в социальных сетях:


Поиск по сайту.

Почему же именно сейчас, как никогда остро, встал вопрос: что ждет человечество - энергетический голод или энергетичес­кое изобилие? Не сходят со страниц газет и журналов статьи об энергетическом кризисе. Из-за нефти возникают войны, расцвета­ют и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых ус­тановок или о новых изобретениях в области энергетики. Разра­батываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Если в конце прошлого века самая распространенная сейчас энергия - энергетическая - играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. Вполне реален прогноз, по которому в 2000 году будет произведено 30 тысяч миллиардов киловатт-часов! Гигант­ские цифры, небывалые темпы роста! И все равно энергии будет мало, а потребности в ней растут еще быстрее.

Уровень материальной, а в конечном счете и духовной куль­туры людей находится в прямой зависимости от количества энер­гии, имеющейся в их распоряжении. Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израс­ходовать энергию. А потребности человека все время растут, да и людей становится все больше.

Так за чем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько по­надобится! Такое, казалось бы, очевидное решение сложной зада­чи, оказывается, таит в себе немало подводных камней.

Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее пре­образований из других форм. Вечные двигатели, якобы производя­щие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложи­лась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, которым поль­зовался первобытный человек для согревания, то есть при сжига­нии топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых элект­ростанциях.

Конечно, способы сжигания топлива стали намного сложнее и совершеннее.

Новые факторы - возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды, потребовали нового подхода к энергетике.

В разработке Энергетической программы приняли участие виднейшие ученые нашей страны, специалисты различных минис­терств и ведомств. С помощью новейших математических моделей электронно-вычислительные машины рассчитали несколько сотен вариантов структуры будущего энергетического баланса страны. Были найдены принципиальные решения, определившие стратегию развития энергетики страны на грядущие десятилетия.

Хотя в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах, струк­тура ее изменится. Должно сократиться использование нефти. Су­щественно возрастет производство электроэнергии на атомных электростанциях. Начнется использование пока еще не тронутых гигантских запасов дешевых углей, например, в Кузнецком, Канс­ко-Ачинском, Экибаcтузском бассейнах. Широко будет применяться природный газ, запасы которого в стране намного превосходят запасы в других странах.

Энергетическая программа страны - основа нашей техники и экономики в канун 21 века.

Но ученые заглядывают и вперед, за пределы сроков, уста­новленных Энергетической программой. На пороге 21 века, и они трезво отдают себе отсчет в реальностях третьего тысячелетия. К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запа­сов топлива может хватить на века. К сожалению, многие нефте­добывающие страны живут сегодняшним днем. Они нещадно расходу­ют подаренные им природой нефтяные запасы. Сейчас многие из этих стран, особенно в районе Персидского залива, буквально купаются в золоте, не задумываясь, что через несколько десятков лет эти запасы иссякнут. Что же произойдет тогда –, а это рано или поздно случится, – когда месторождения нефти и газа будут исчерпаны? Происшедшее повышение цен на нефть, необходимую не только энергетике, но и транспорту, и химии, заставило заду­маться о других видах топлива, пригодных для замены нефти и газа. Особенно призадумались тогда те страны, где нет собс­твенных запасов нефти и газа и которым приходится их покупать.

А пока в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников, которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Решение этой задачи исследователи ищут на разных пу­тях. Самым заманчивым, конечно, является использование вечных, возобновляемых источников энергии-энергии текущей воды и вет­ра, океанских приливов и отливов, тепла земных недр, солнца. Много внимания уделяется развитию атомной энергетики, ученые ищут способы воспроизведения на Земле процессов, протекающих в звездах и снабжающих их колоссальными запасами энергии.


Энергия – с чего все началось

Сегодня нам может казаться, что развитие и совершенствование человека происходило невообразимо медленно. Ему в буквальном смысле слова приходилось ждать милостей от природы. Он был практически беззащит н перед холодом, ему непрестанно угрожали дикие звер , его жизнь постоянно висела на волоске. Но постепен о человек развился настолько, что сумел найти оружие, которое в сочетании со способностью мыслить и творить окончательно возвысило его над всем живым окружением. Сначала огонь добывали случайно – например, из горящих деревьев, в которые ударила молния, затем стали добывать сознательно: за счет трения друг о друга двух подходящих кусков дерева человек впервые зажег огонь 80–150 тысяч лет назад. Животворный, таинственный, вселяющий уверенность и чувство гордости ОГОНЬ.

После этого люди уже не отказывались от возможности использовать огонь в борьбе против суровых холодов и хищных зверей, для приготовления с трудом добытой пищи. Сколько ловкости, настойчивости, опыта да и просто везения это требовало! Представим себе человека, окруженного нетронутой природой – без построек, которые бы его защищали, без знания хотя бы элементарных физических законов, с запасом слов, не превышающим нескольких десятков. (Кстати, многие ли из нас, даже обладающие солидной научной подготовкой, смогли бы зажечь огонь, не прибегая к каким-либо техническим средствам–хотя бы спичкам?) К этому открытию человек шел очень долго и распространялось Оно медленно, но ознаменовало собой один из важнейших переломных этапов в истории цивилизации.

Шло время. Люди научились получать тепло, но ста ре располагали никакой силой, кроме собственных мускулов, которая помогала бы им подчинить себе природу. И все же постепенно, мало-помалу они стали использовать силу прирученных животных, ветра и воды. По данным историков, первые тягловые животные была запряжены в плуг около 5000 лет назад. Упоминание о первом использовании водной энергии – запуске первой мельницы с колесом, приводимым в движение водяным потоком,– относится к началу нашего летосчисления. Однако потребовалась еще тысяча лет, прежде чем это изобретение получило распространение. А древнейшие из известных сегодня ветряных мельниц в Европа были построены в XI в.

На протяжении столетий степень использования новых источников энергии - домашних животных, ветра и воды – оставалась очень низкой. Главным же источником энергии, при помощи которой человек строил жилье, обрабатывал поля, «путешествовал», защищался и нападал, служила сила его собственных рук и ног. И так продолжалось примерно до середины нашего тысячелетия. Правда, уже в 1470 г. был спущен на воду первый большой четырехмачтовый корабль; около 1500 г. гениальный Леонардо да Винчи предложил не только весьма остроумную модель ткацкого станка, но и проект сооружения летающей машины. Ему же принадлежат многие другие, для того времени просто фантастические идеи и замыслы, осуществление которых должно было способствовать расширению знаний и производительных сил. Но подлинный перелом в технической мысли человечества наступил сравнительно недавно, немногим боле тр х столетий назад.

Одним из первых гигантов на пути научного прогресса человечества, несомн нно, был Исаак Ньютон. Этот выдающийся английский естествоиспытатель всю свою долгую жизнь и незаурядный талант посвятил пауке: физике, астрономии и математик . Он сформулировал основны законы классической механики, разработал т ор ю тяготен я, заложил основы гидродинамики и акустики, в значит льной мере способствовал развитию оптики, вместе с Лейб иц м создал начала теории исчислен я бескон чно малых и теории симметричных функций. Физику XVIII и XIX столетий по праву называют ньюто овской. Труды Исаака Ньютона во многом помогл умножит силу человеческих мускулов и творч ские в зможности человеческого мозга.

Преимущества гидроэлектростанций очевидны – постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным.

Поэтому в начале XX века было построено всего несколько гидроэлектростанций. Вблизи Пятигорска, на Северном Кавказе на горной реке Подкумок успешно действовала довольно крупная электростанция с многозначительным названием "Белый уголь". Это было лишь началом.

Уже в историческом плане ГОЭЛРО предусматривалось строительство крупных гидроэлектростанций. В 1926 году в строй вошла Волховская ГЭС, в следующем – началось строительство знаменитой Днепровской. Дальновидная энергетическая политика, проводящаяся в нашей стране, привела к тому, что у нас, как ни в одной стране мира, развита система мощных гидроэлектрических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжские, Красноярская и Братская, Саяно-Шушенская ГЭС. Эти станции, дающие буквально океаны энергии, стали центрами, вокруг которых развились мощные промышленные комплексы.

Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.


Геотермальная энергия

Земля, эта маленькая зеленая планета,–наш общий дом, из которого мы пока не можем, да и не хотим, ухо­дить. По сравнению с мириадами других планет Земля действительно невелика: большая ее часть покрыта уют­ной и живительной зеленью. Но эта прекрасная и спо­койная планета порой приходит в ярость, и тогда с ней шутки плохи – она способна уничтожить все, что мило­стиво дарила нам с незапамятных времен. Грозные смерчи и тайфуны уносят тысячи жизней, неукротимые воды рек и морей разрушают все на своем пути, лесные пожары за считанные часы опустошают огромные тер­ритории вместе с постройками и посевами.

Но все это мелочи по сравнению с извержением про­снувшегося вулкана. Едва ли сыщешь на Земле другие примеры стихийного высвобождения природной энергии, которые по силе могли бы соперничать с некоторыми вулканами.

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Энергетика земли – геотермальная энергетика базируется на использова­нии природной теплоты Земли. Верхняя часть земной ко­ры имеет термический градиент, равный 20–30 °С в рас­чете на 1 км глубины, и, по данным Уайта (1965 г.), ко­личество теплоты, содержащейся в земной коре до глу­бины 10 км (без учета температуры поверхности), равно приблизительно 12,6-10^26 Дж. Эти ресурсы эквивалент­ны теплосодержанию 4,6·10 16 т угля (принимая среднюю теплоту сгорания угля равной 27,6-10 9 Дж/т), что бо­лее чем в 70 тыс. раз превышает теплосодержание всех технически и экономически извлекаемых мировых ресур­сов угля. Однако геотермальная теплота в верхней части земной коры (до глубины 10 км) слишком рассеяна, что­бы на ее базе решать мировые энергетические проблемы. Ресурсы, пригодные для промышленного использования, представляют собой отдельные месторождения геотермальной энергии, сконцентрированной на доступной для разработки глубине, имеющие определенные объемы и температуру, достаточные для использования их в целях производства электрической энергии или теплоты.

С геологической точки зрения геотермальные энерго­ресурсы можно разделить на гидротермальные конвективные системы, горячие сухие системы вулканического происхождения и системы с высоким тепловым потоком.

Гидротермальные системы

К категории гидротермальных конвективных систем относят подземные бассейны пара или горячей воды, ко­торые выходят на поверхность земли, образуя гейзеры, сернистые грязевые озера и фумаролы. Образование та­ких систем связано с наличием источника теплоты го­рячен или расплавленной скальной породой, располо­женной относительно близко к поверхности земли. Над этой зоной высокотемпературной скальной породы на­ходится формация из проницаемой горной породы, содержащая воду, которая поднимается вверх в резуль­тате ее подстилающей горячей породой. Про­ницаемая порода, в свою очередь, сверху покрыта непро­ницаемой скальной породой, образующей «ловушку» для перегретой воды. Однако наличие в этой породе трещин или пор позволяет горячей воде или пароводяной смеси подниматься к поверхности земли. Гидротермальные конвективные системы обычно размещаются по границам тектонических плит земной коры, которым свойственна вулканическая активность.

В принципе для производства электроэнергии на месторождениях с горячей водой применяется метод, основанный на использовании пара, образовавшегося при испарении горячей жидкости на поверхности. Этот метод использует то явление, что при приближении го­рячей воды (находящейся под высоким давлением) по скважинам из бассейна к поверхности давление падает и около 20 % жидкости вскипает и превращается в пар. Этот пар отделяется с помощью сепаратора от воды и направляется в турбину. Вода, выходящая из сепарато­ра, может быть подвергнута дальнейшей обработке в зависимости от ее минерального состава. Эту воду можно закачивать обратно в скальные породы сразу или, если это экономически оправдано, с предварительным извле­чением из нее минералов. Примерами геотермальных месторождений с горячей водой являются Уайракей и Бродлендс в Новой Зеландии, Серро-Прието в Мексике, Солтон-Си в Калифорнии, Отаке в Японии.

Другим методом производства электроэнергии на базе высоко- или среднетемпературных геотермальных вод является использование процесса с применением двух­контурного (бинарного) цикла. В этом процессе вода, полученная из бассейна, используется для нагрева теплоносителя второго контура (фреона или изобутана), имеющего низкую температуру кипения. Пар, образовав­шийся в результате кипения этой жидкости, использует­ся для привода турбины. Отработавший пар конденси­руется и вновь пропускается через теплообменник, создавая тем самым замк утый цикл. Установки, исполь­зующие фреон в качестве теплоносителя второго контура, о настоящее время подготовлены для промышленного освоения в диапазоне температур 75–150 °С и при еди­ничной электрической мощности в пределах 10–100 кВт. Такие установки могут быть использованы для произ­водства электроэнергии в подходящих для этого местах, особенно в отдаленных сельских районах.

Горячие системы вулканического происхождения

Ко второму типу геотермальных ресурсов (горячие системы вулканического происхождения) относятся маг­ма и непроницаемые горячие сухие породы (зоны за­стывшей породы вокруг магмы и покрывающие ее скаль­ные породы). Получение геотермальной энергии непо­средственно из магмы пока технически неосуществимо. Технология, необходимая для использования энергии горячих сухих пород, только начинает разрабатываться. Предварительные технические разработки методов использования этих энергетических ресурсов предусматри­вают устройство замкнутого контура с циркулирующей по нему жидкостью, проходящего через горячую породу (рис. 5 ). Сначала пробуривают скважину, достигающую области залегания горячей породы; затем через нее в породу под большим давлением закачивают холодную воду, что приводит к образованию в ней трещин. После этого через образованную таким образом зону трещино­ватой породы пробуривают вторую скважину. Наконец, холодную воду с поверхности закачивают в первую скважину. Проходя через горячую породу, она нагрева­ется II извлекается через вторую скважину в виде пара или горячей воды, которые затем можно использовать для производства электроэнергии одним из рассмотрен­ных ранее способов.

Системы с высоким тепловым потоком

Геотермальные системы третьего типа существуют в тех районах, где в зоне с высокими значениями теплово­го потока располагается глубокозалегающий осадочный бассейн. В таких районах, как Парижский или Венгерский бассейны, температура воды, поступающая из сква­жин, может достигать 100 °С.

Особая категория месторождений этого типа нахо­дится в районах, где нормальный тепловой поток через грунт оказывается в ловушке из изолирующих непрони­цаемых пластов глины, образовавшихся в быстро опускающихся геосинклинальных зонах или в областях опускания земной коры. Температу­ра воды, поступающей из геотермальных месторождений в зонах геодавления, может достигать 150–180 °С, а давление у устья скважины 28–56 МПа. Суточная про­изводительность в расчете на одну скважину может со­ставлять несколько миллионов кубических метров флюида. Геотермальные бассейны в зонах повышенного геодавле­ния найдены во многих районах в ходе нефтегазоразведки, например, в Северной и Южной Америке, на Даль­нем и Ближнем Востоке, в Африке и Европе. Возмож­ность использования таких месторождений в энергетиче­ских целях пока еще не продемонстрирована.


Энергия мирового океана

Резкое увеличение цен на топливо, трудности с его полученном, сообщения об истощении топливных ресурсов – все эти видимые признаки энергетического кризиса вызвали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.

Тепловая энергия океана

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. км 2) занимают моря и океаны – акватория Тихого океана составляет 180 млн. км 2 . Атлантического – 93 млн. км 2 , Индийского – 75 млн. км 2 .Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 10 26 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 10 18 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Последние десятилетие характеризуется определенными успехами в использовании тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1 (ОТЕС – начальные буквы английских слов Осеаn Тhеrmal Energy Conversion, т.e. преобразованиетепловой энергии океана – речь идет о преобразовании в электрическую энергию). В августе 1979 г. вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с поло­виной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если но считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48,7 кВт, максимальная –53 кВт; 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точ­нее – на зарядку аккумуляторов. Остальная вырабаты­ваемая мощность расходовалась на собственные нужды установки. В их число входят затраты анергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.

Три насоса потребовались из следующего расчета: один – для подачи теплой виды из океана, второй – для подкачки холодной воды с глубины около 700 м, третий – для перекачки вторичной рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочий жидкости применяется аммиак.

Установка мини-ОТЕС смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случаи необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба–судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой.

Впервые в истории техники установка мини-ОТЕС смогла отдать во внешнюю нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полученный при эксплуатации мини-ОТЕС, позволил быстро построить более мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощных систем подоб ого типа.

Новые станции ОТЕС на мощ ость во много десятков и сотен мегаватт проект руются без судна. Это – одна грандио ная труба, в верхней части которой аходится круглый маши ный зал, где размещены все необходимые устройства для реобразования анергии (рис. 6 ). Верхний конец трубопровода хо одной воды расположится в океане на глубине 25– 0 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут уста овлены турбоагрегаты, работающие на парах аммиака, а также все остальное оборудовани . асса всег сооружения превышает 300 тыс. т. Труба-монстр, уходящая почти на километр холодную глубину океана, а в ее верхней части что-то вроде мале ького островка. И никакого судна, кроме, конечно, обычных судов, необходимых для обслуживания сист мы и д я связи с берегом.

Энергия приливов и отливов.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление – ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в 400 раз дальше, гораздо меньшая масса Луны действует на земные поды вдвое сильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Луной (лунный прилив). В морских просторах приливы чередуются с отливами теоретически через 6 ч 12 мин 30 с. Если Луна, Солнце и Земля находятся на одной прямой (так называемая сизигия), Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив (сизигийный прилив, или большая вода). Когда же Солнце стоит под прямым углом к отрезку Земля-Луна (квадратура), наступает слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы чередуются через семь дней.

Однако истинный ход прилива и отлива весьма сложен. На него влияют особенности движения небесных тел, характер береговой линии, глубина воды, морские течения и ветер.

Самые высокие и сильные приливные волны возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Приливная волна Индийского океана катится против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана распространяется на 900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой 50-70 см.

Максимально возможная мощность в одном цикле прилив – отлив, т. е. от одного прилива до другого, выражается уравнением

где р плотность воды, g – ускорение силы тяжести, S – площадь приливного бассейна, R – разность уровней при приливе.

Как видно из (формулы, для использования приливной энергии наиболее подходящими можно считать такие места на морском побережье, где приливы имеют большую амплитуду, а контур и рельеф берега позволяют устроить большие замкнутые «бассейны».

Мощность электростанций в некоторых местах могла бы составить 2–20 МВт.

Поскольку энергия солнечного излучен я распред лена по большо площади (иными словами, име т н зкую плотность), любая уста овка для прямого использования солнечной энергии должна иметь собирающее устройство (коллектор) с достаточ ой поверхностью.

Простейшее устройство такого рода– лоский к лл ктор; в принципе это черная плита, хорошо золированная снизу Она прикрыта ст клом или пластмассой, которая пропускает свет, но не ро ускает нфракрасное т плово излуче ие. В пространстве между л той и стеклом чаще всего размещают черные трубки, ч р з которые текут вода, масло, ртуть, воздух, с рнистый ангидрид и т. п. Солнечное излучени , прон кая через стекло или пластмассу в коллектор, поглоща тся черными трубками и плитой и нагр ва т рабочее в щество в трубках. Тепловое излучен е не может выйти из коллектора, поэтому температура в нем значит льно выш (па 200–500°С), чем температура окружающего воздуха. В этом проявляется так называемый парниковый эффект. Обычные садовые пар ики, по сути дела, представляют собой простые колл кт ры солнечного злучения. Но чем дальше от тропиков, тем менее эфф е тивен горизо тальный коллектор, а поворачивать его всл д за С лнцем слишком трудно и дорого. Поэтому такие коллекторы, как правило, устанавл вают под определенным оптимальным углом к югу.

Более сложным дорогостоящим коллектором явля тся вогнутое зеркало, которое сосредоточивает падающее излучение в малом объеме около определенной г ометрической точки – фокуса. Отражающая поверхность зеркала выполнена из металлизированной пластмассы либо составлена из многих малых плоских зеркал, прикрепленных к большому параболическому основанию. Благодаря специальным механизмам коллекторы такого типа постоянно повернуты к Солнцу–это позволяет собирать возможно большее количество солнечного излучения. Температура в рабочем пространстве зеркальных коллекторов остигает 3000°С и выше.

Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт*год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы. Но, тем не менее, станции-преобразователи солнечной энергии строят и они работают.

С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Кажется, самим здравым смыслом определено ее место. Уж если где и строить такие станции, так это в первую очередь в краю курортов, санаториев, домов отдыха, туристских маршрутов; в краю, где надо много энергии, но еще важнее сохранить в чистоте окружающую среду, само благополучие которой, и прежде всего чистота воздуха, целебно для человека.

Крымская СЭС невелика – мощность всего 5 МВт. В определенном смысле она – проба сил. Хотя, казалось бы, чего еще надо пробовать, когда известен опыт строительства гелиостанций в других странах.

На острове Сицилия еще в начале 80-х годов дала ток солнечная электростанция мощностью 1 МВт. Принцип ее работы тоже башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на 50-метровой высоте. Там вырабатывается пар с температурой более 600 °С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью 10–20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу.

Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего 0,5 МВт. Но на ее принципе могут быть созданы куда более крупные – до 300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях.

По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках.

Но, для примера, электростанция на солнечных батареях вблизи экватора с суточной выработкой 500 МВт·ч (примерно столько энергии вырабатывает довольно крупная ГЭС) при к.п.д. 10% потребовала бы эффективной поверх­ности около 500000 м 2 . Ясно, что такое огромное коли­чество солнечных полупроводниковых элементов может. окупиться только тогда, когда их производство будет действительно дешево. Эффективность солнечных элек­тростанций в других зонах Земли была бы мала из-за неустойчивых атмосферных условий, относительно сла­бой интенсивности солнечной радиации, которую здесь даже в солнечные дни сильнее поглощает атмосфера, а также колебаний, обусловленных чередованием дня и ночи.

Тем не менее солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях, а на Земле – в первую очередь для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радио­аппаратура, электрические бритвы и зажигалки и т.п.). Полупроводниковые солнечные батареи впервые были установлены на третьем советском искусственном спут­нике Земли (запущенном на орбиту 15 мая 1958 г.).

Идет работа, идут оценки. Пока они, надо признать, не в пользу солнечных электростанций: сегодня эти сооружения все еще относятся к наиболее сложным и самым дорогостоящим техническим методам использования гелиоэнергии. Нужны новые варианты, новые идеи. Недостатка в них нет. С реализацией хуже.


Атомная энергия.

При исследовании распада атомных ядер оказалось, что каждое ядро весит меньше, чем сумма масс его протонов и нейтронов. Это объясняется тем, что при объединении протонов и нейтронов в ядро выделяется много энергии. Убыль массы ядер на 1 г эквивалентна такому количеству тепловой энергии, какое получилось бы при сжигании 300 вагонов каменного угля. Не уди­вительно поэтому, что исследователи приложили все силы, стремясь найти ключ, который позволил бы «открыть» атомное ядро и высвободить скрытую в нем огромную энергию.

Вначале эта задача казалась неразрешимой. В ка­честве инструмента ученые не случайно выбрали ней­трон. Эта частица электрически нейтральна, и на нее не действуют электрические силы отталкивания. По­этому нейтрон легко может проникнуть в атомное ядро. Нейтронами бомбардировали ядра атомов отдельных эле­ментов. Когда же очередь до­шла до урана, обнаружилось, что этот тяжелый элемент ве­дет себя иначе, чем другие. Кстати, следует напомнить, что встречающийся в природе уран содержит три изотопа: уран-238 (238 U), уран-235 (235 U) и уран-234 (234 U), при­чем цифра означает массовое число.

Атомное ядро урана-235 оказалось значительно менее устойчивым, чем ядра других элементов и изотопов. Под действием одного нейтрона наступает деление (расщеп­ление) урана, его ядро распадается па два приблизи­тельно одинаковых осколка, например на ядра крипто­на и бария. Эти осколки с огромными скоростями раз­летаются в разных направлениях.

Но главное в этом процессе, что при распаде одного ядра урана возникают два-три новых свободных ней­трона. Причина заключается в том, что тяжелое ядро урана содержит больше нейтронов, чем их требуется для образования двух меньших атомных ядер. «Строи­тельного материала» слишком много, и атомное ядро должно от него избавиться.

Каждый из новых нейтронов может сделать то же, что сделал первый, когда расщепил одно ядро. В самом деле, выгодная калькуляция: вместо одного нейтрона получаем два-три с такой же способностью расщепить следующие два-три ядра урана-235. И так продолжает­ся дальше: происходит цепная реакция, и, если ею не управлять, она приобретает лавинный характер и за­канчивается мощнейшим взрывом – взрывом атомной бомбы. Научившись регулировать этот процесс, люди получили возможность практически непрерывно получать энергию из атомных ядер урана. Управление этим процессом осуществляют в ядерных реакторах.

Ядерный реактор – устройство, в котором протекает управляемая цепная реакция. При этом распад атом­ных ядер служит регулируемым источником и тепла, и нейтронов.

Первый проект ядерного реактора разработал в 1939 г. французский ученый Фредерик Жолио-Кюри. Но вскоре Францию оккупировали фашисты, и проект не был реализован.

Цепная реакция деления урана впервые была осу­ществлена в 1942 г. в США, в реакторе, который груп­па исследователей во главе с итальянским ученым Энрико Ферми построила в помещении стадиона Чи­кагского университета. Этот реактор имел размеры 6х6х6,7 м и мощность 20 кВт; он работал без внеш­него охлаждения.

Первый ядерный реактор в СССР (и в Европе) был построен под руководством акад. И. В. Курчатова и запущен в 1946 г.

Невиданными темпами развивается сегодня атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт! Некоторые ученые высказывают мнение, что к 21 веку около половины всей электроэнергии в мире будет вырабатываться на атомных электростанциях.

В принципе энергетический ядерный реактор устроен довольно просто – в нем, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распада атомов урана или другого ядерного топлива. На атомной электростанции нет громадного парового котла, состоящего из тысяч километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил относительно небольшой ядерный реактор.

Атомные реакторы на тепловых нейтронах различаются между собой главным образом по двум признакам: какие вещества используются в качестве замедлителя нейтронов и какие в качестве теплоносителя, с помощью которого производится отвод тепла из активной зоны реактора. Наибольшее распространение в настоящее время имеют водо-водяные реакторы, в которых обычная вода служит и замедлителем нейтронов, и теплоносителем, уран-графитовые реакторы (замедлитель – графит, теплоноситель – обычная вода), газографитовые реакторы (замедлитель – графит, теплоноситель – газ, часто углекислота), тяжеловодные реакторы (замедлитель – тяжелая вода, теплоноситель – либо тяжелая, либо обычная вода).

Ни рис. 9 представлена принципиальная схема водо-водяного реактора. Активная зона реактора представляет собой толстостенный сосуд, в котором находятся вода и погруженные в нее сборки тепловыделяющих элементов (ТВЭЛов). Тепло, выделяемое ТВЭЛами забирается водой, температура которой значительно повышается.

Конструкторы довели мощность таких реакторов до миллиона киловатт. Могучие энергетические агрегаты установлены на Запорожской, Балаковской и других атомных электростанциях. Вскоре реакторы такой конструкции, видимо, догонят по мощности и рекордсмена - полуторамиллионик с Игналинской АЭС.

Но все-таки будущее ядерной энергетики, по-видимому, останется за третьим типом реакторов, принцип работы и конструкция которых предложены учеными, - реакторами на быстрых нейтронах. Их называют еще реакторами-размножителями. Обычные реакторы используют замедленные нейтроны, которые вызывают цепную реакцию в довольно редком изотопе – уране-235, которого в природном уране всего около одного процента. Именно поэтому приходится строить огромные заводы, на которых буквально просеивают атомы урана, выбирая из них атомы лишь одного сорта урана-235. Остальной уран в обычных реакторах использоваться не может. Возникает вопрос: а хватит ли этого редкого изотопа урана на сколько-нибудь продолжительное время или же человечество вновь столкнется с проблемой нехватки энергетических ресурсов?

Более тридцати лет назад эта проблема была поставлена перед коллективом лаборатории Физико-энергетического института. Она была решена. Руководителем лаборатории Александром Ильичом Лейпунским была предложена конструкция реактора на быстрых нейтронах. В 1955 году была построена первая такая установка. Преимущества реакторов на быстрых нейтронах очевидны. В них для получения энергии можно использовать все запасы природных урана и тория, а они огромны – только в Мировом океане растворено более четырех миллиардов тонн урана.

Нет сомнения в том, что атомная энергетика заняла прочное место в энергетическом балансе человечества. Она безусловно будет развиваться и впредь, без отказано поставляя столь необходимую людям энергию. Однако понадобятся дополнительные меры по обеспечению надежности атомных электростанций, их безаварийной работы, а ученые и инженеры сумеют найти необходимые решения.


Водородная энергетика

Многие специалисты высказывают опасение по поводу все возрастающей тенденции к сплошной электрификации экономики и хозяйства: на тепловых электростанциях сжигается все больше химического топлива, а сотни новых атомных электростанций, как и зарождающиеся солнечные, ветряные и геотермальные станции, будут во все более широком масштабе (и в конце концов исключительно) работать для производства электрической энергии. Поэтому ученые заняты поиском принципиально новых энергетических систем.

К.п.д. тепловых электростанций относительно низок, хотя конструкторы прилагают все силы, чтобы его повысить. В современных электростанциях на органическом топливе он составляет около 40%, а в атомных электростанциях – 33%. При этом большая доля энергии теряется с отходящим теплом (например, вместе со сбрасываемой из систем охлаждения теплой водой), что приводит к так называемому тепловому загрязнению окружающей среды. Отсюда следует, что тепловые электростанции нужно строить в тех местах, где имеется а достаточном количестве охлаждающая вода, или же в открытых ветрам местностях, где воздушное охлаждение не будет оказывать отрицательного влияния на микроклимат. К этому добавляются вопросы безопасности и гигиены. Вот почему будущие крупные АЭС должны располагаться как можно дальше от густонаселенных районов. Но тем самым источники электроэнергии удаляются от ее потребителей, что значительно усложняет проблему электропередачи.

Передача электроэнергии по проводам обходится очень дорого: она составляет около трети себестоимости энергии для потребителя. Чтобы снизить расходы, строят линии электропередачи все более высокого напряжения – оно скоро достигнет 1500 кВ. Но воздушные высоковольтные линии требуют отчуждения большой земельной площади, к тому же они уязвимы для очень сильных ветров и иных метеорологических факторов. А подземные кабельные линии обходятся в 10 – 20 раз дороже, и их прокладывают лишь в исключительных случаях (например, когда это вызвано соображениями архитектуры или надежности).

Серьезнейшую проблему составляет накопление и хранение электроэнергии, поскольку электростанции наиболее экономично работают при постоянной мощности и полной нагрузке. Между тем спрос на электроэнергию меняется в течение суток, недели и года, так что мощность электростанций приходится к нему приспосабливать. Единственную возможность сохранять впрок большие количества электроэнергии в настоящее время дают гидроаккумулирующие электростанции, но и они в свою очередь связаны с множеством проблем.

Все эти проблемы, стоящие перед современной энергетикой, могло бы – по мнению многих специалистов – разрешить использование водорода в качестве топлива и создание так называемого водородного энергетического хозяйства.

Водород, самый простой и легкий из всех химических элементов, можно считать идеальным топливом. Он имеется всюду, где есть вода. При сжигании водорода образуется вода, которую можно снова разложить на водород и кислород, причем этот процесс не вызывает никакого загрязнения окружающей среды. Водородное пламя не выделяет в атмосферу продуктов, которыми неизбежно сопровождается горение любых других видов топлива: углекислого газа, окиси углерода, сернистого газа, углеводородов, золы, органических перекисей н т. п. Водород обладает очень высокой теплотворной способностью: при сжигании 1 г водорода получается 120 Дж тепловой энергии, а при сжигании 1 г бензина – только 47 Дж.

Водород можно транспортировать и распределять по трубопроводам, как природный газ. Трубопроводный транспорт топлива – самый дешевый способ дальней передачи энергии. К тому же трубопроводы прокладываются под землей, что не нарушает ландшафта. Газопроводы занимают меньше земельной площади, чем воздушные электрические линии. Передача энергии в форме газообразного водорода по трубопроводу диаметром 750 мм на расстояние свыше 80 км обойдется дешевле, чем передача тоги же количества энергии в форме переменного тока по подземному кабелю. На расстояниях больше 450 км трубопроводный транспорт водорода дешевле, чем использование воздушной линии электропередачи постоянного тока с напряжением 40кВ, а па расстоянии свыше 900 км – дешевле воздушной линии электропередачи переменного тока с напряжением 500 кВ.

Водород – синтетическое топливо. Его можно получать из угля, нефти, природного газа либо путем разложения воды. Согласно оценкам, сегодня в мире производят и потребляют около 20 млн. т водорода в год. Половина этого количества расходуется на производство аммиака и удобрений, а остальное – на удаление серы из газообразного топлива, в металлургии, для гидрогенизации угля и других топлив. В современной экономике водород остается скорее химическим, нежели энергетическим сырьем.

Современные и перспективные методы производства водорода

Сейчас водород производят главным образом (около 80%) из нефти. Но это неэкономичный для энергети­ки процесс, потому что энергия, получаемая из такого водорода, обходится в 3,5 раза дороже, чем энергия от сжигания бензина. К тому же себестоимость такого во­дорода постоянно возрастает по мере повышения цен на нефть.

Небольшое количество водорода получают путем электролиза. Производство водорода методом электро­лиза воды обходится дороже, чем выработка его из нефти, но оно будет расширяться и с развитием атом­ной энергетики станет дешевле. Вблизи атомных элек­тростанций можно разместить станции электролиза воды, где вся энергия, выработанная электростанцией, пойдет на разложение воды с образованием водорода. Правда, цена электролитического водорода останется выше цены электрического тока, зато расходы на тран­спортировку и распределение водорода настолько малы, что окончательная цена для потребителя будет вполне приемлема по сравнению с ценой электроэнергии.

Сегодня исследователи интенсивно работают над удешевлением технологических процессов крупнотон­нажного производства водорода за счет более эффек­тивного разложения воды, используя высокотемпера­турный электролиз водяного пара, применяя катализа­торы, полунепроницаемые мембраны и т. п.

Большое внимание уделяют термолитическому мето­ду, который (в перспективе) заключается в разложе­нии воды на водород и кислород при температуре 2500 °С. Но такой температурный предел инженеры еще не освоили в больших технологических агрегатах, в том числе и работающих на атомной энергии (в высо­котемпературных реакторах пока рассчитывают лишь на температуру около 1000°С). Поэтому исследовате­ли стремятся разработать процессы, протекающие в не­сколько стадий, что позволило бы вырабатывать водо­род в температурных интервалах ниже 1000°С.

В 1969 г. в итальянском отделении «Евратома» была пущена в эксплуатацию установка для термолитического получения водорода, работающая с к.п.д. 55% при температуре 730°С. При этом использовали бромистый кальций, воду и ртуть. Вода в установке разлагается на водород и кислород, а остальные реаген­ты циркулируют в повторных циклах. Другие – скон­струированные установки работали – при температурах 700–800°С. Как полагают, высокотемпературные реак­торы позволят поднять к.п.д. таких процессов до 85%. Сегодня мы не в состоянии точно предсказать, сколько будет стоить водород. Но если учесть, что цены всех современных видов энергии проявляют тен­денцию к росту, можно предположить, что в долго­срочной перспективе энергия в форме водорода будет обходиться дешевле, чем в форме природного газа, а возможно, и в форме электрического тока.

Использование водорода

Когда водород станет столь же доступным топливом, как сегодня природный газ, он сможет всюду его заме­нить. Водород можно будет сжигать в кухонных плитах, в водонагревателях и отопительных печах, снабженных горелками, которые почти или совсем не будут отли­чаться от современных горелок, применяемых для сжи­гания природного газа.

Как мы уже говорили, при сжигании водорода не остается никаких вредных продуктов сгорания. Поэтому отпадает нужда в системах отвода этих продуктов для отопительных устройств, работающих на водороде, Более того, образующийся при горении водяной пар можно считать полезным продуктом - он увлажняет воздух (как известно, в современных квартирах с цен­тральным отоплением воздух слишком сух). А отсут­ствие дымоходов не только способствует экономии строительных расходов, но и повышает к. п. д. отопле­ния на 30%.

Водород может служить и химическим сырьем во многих отраслях промышленности, например при про­изводстве удобрений и продуктов питания, в металлур­гии и нефтехимии. Его можно использовать и для вы­работки электроэнергии на местных тепловых электро­станциях.


Заключение.

Неоспорима роль энергии в поддержании и дальней­шем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой дея­тельности, которая не требовала бы – прямо или кос­венно – больше энергии, чем ее могут дать мускулы человека.

Потребление энергии – важный показатель жизнен­ного уровня. В те времена, когда человек добывал пи­щу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овла­дения огнем эта величина возросла до 16 МДж: в при­митивном сельскохозяйственном обществе она составля­ла 50 МДж, а в более развитом – 100 МДж.

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.

Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного "корма".

Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти.

И вот новый виток в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже.

Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники.

Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.

А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю... Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, "воинствующая" линия энергетики.

В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.

Но времена изменились. Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика "щадящая". Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы.

Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.

Яркий пример тому - быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со Всем, и Все тянется к энергетике, зависит от нее.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, "черных дырах", вакууме, - это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

Лабиринты энергетики. Таинственные переходы, узкие, извилистые тропки. Полные загадок, препятствий, неожиданных озарений, воплей печали и поражений, кликов радости и побед. Тернист, непрост, непрям энергетический путь человечества. Но мы верим, что мы на пути к Эре Энергетического Изобилия и что все препоны, преграды и трудности будут преодолены.

Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и экономичные методы. Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве, и себестоимости. Нам, по-видимому. следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: "Нет простых решений, есть только разумный выбор".


Список литературы

1. 1. Аугуста Голдин. Океаны энергии. – Пер. с англ. – М.: Знание, 1983. – 144 с.

2. 2. Баланчевадзе В. И., Барановский А. И. и др.; Под ред. А. Ф. Дьякова. Энергетика сегодня и завтра. – М.: Энергоатомиздат, 1990. – 344 с.

3. 3. Более чем достаточно. Оптимистический взгляд на будущее энергетики мира/ Под ред. Р. Кларка: Пер. с англ. – М.: Энергоатомиздат, 1984. – 215 с.

4. 4. Бурдаков В.П.. Электроэнергия из космоса. – М.: Энергоатомиздат, 1991. – 152 с.

5. 5. Вершинский Н. В. Энергия океана. – М.: Наука, 1986. – 152 с.

6. 6. Гуревич Ю. Холодное горение. //Квант. – 1990 г. - №6. – ст. 9-15.

7. 7. Источники энергии. Факты, проблемы, решения. – М.: Наука и техника, 1997. – 110 с.

8. 8. Кириллин В. А. Энергетика. Главные проблемы: В вопросах и ответах. – М.: Знание, 1990. – 128 с.

9. 9. Кононов Ю. Д.. Энергетика и экономика. Проблемы перехода к новым источникам энергии. – М.: Наука, 1981. – 190 с.

10.10.Меркулов О. П. У пошуках енергії майбутнього. – К.: Наукова думка, 1991. – 123 с.

11.11.Мировая энергетика: прогноз развития до 2020 г./ Пер. с англ. под ред. Ю. Н. Старшикова. – М.: Энергия, 1980. – 256 с.

12.12.Нетрадиционные источники энергии. – М.: Знание, 1982. – 120 с.

13.13.Подгорный А. Н. Водородная энергетика. – М.: Наука, 1988.– 96 с.

14.14.Соснов А. Я. Энергия Земли. – Л.: Лениздат, 1986. – 104 с.

15.15.Шейдлин А. Е. Новая энергетика. – М.: Наука, 1987. – 463 с.

16.16.Шульга В. Г., Коробко Б. П., Жовмір М. М. Основні результати та завдання впровадження нетрадиційних та відновлюваних джерел енергії в Україні.// Энергетика и электрификация. – 1995 г. - №2. – ст. 39-42.

17.17.Энергетика мира: Переводы докладов XI конгресса МИРЭК/ Под ред. П. С. Непорожнего. – М.: Энергоатомиздат, 1982. – 216 с.

18.18.Энергетические ресурсы мира/ Под ред. П.С.Непорожнего, В.И. Попкова. – М.: Энергоатомиздат, 1995. – 232 с.

19.19.Ю. Тёльдеши, Ю. Лесны. Мир ищет энергию. – М.: Мир, 1981. – 440 с.

20.20.Юдасин Л. С.. Энергетика: проблемы и надежды. – М.: Просвещение, 1990. – 207с.